
Digging Into IDAPI Part 1
by John O’Connell

The Borland Database Engine,
or BDE, is the foundation on

which Borland’s database develop-
ment products – Paradox, dBase
and of course, Delphi – are all built.
Applications wishing to use BDE
services do so by calling BDE func-
tions via IDAPI, the Integrated
Database API, which provides func-
tions to enable the management
and control of IDAPI objects such
as databases, tables and queries,
to name but a few. This article aims
to explore the BDE in more detail,
to look at how Delphi encapsulates
BDE functionality and how we can
extend Delphi’s database handling
capabilities by using calls to IDAPI.

Programming IDAPI
A BDE application uses IDAPI func-
tion calls to create and manage the
various IDAPI objects discussed in
last month’s The Late Session
article. IDAPI objects are uniquely
identified by a handle: any function
which creates an IDAPI object will
return a handle to that created
object and any function which ma-
nipulates that object, or queries its
properties, will take (at least) that
object’s handle as a parameter.
Once an IDAPI object is freed, its
handle is no longer valid. As far as
the BDE is concerned, IDAPI ob-
jects are freed when closed. Table
1 lists the IDAPI objects and the
applicable Delphi equivalents.

The core of Delphi’s use of IDAPI
to give us all those wonderful, easy
to use data-access components is
defined in the DB unit which is used
by any Delphi application using the
data-access VCL components.
Let’s check out what happens in
the DB unit (and indeed, in any BDE
application) when it initialises at
run-time. First the BDE is initialised
by a call to DbiInit which opens an
IDAPI system object (if one doesn’t
already exist) and an IDAPI client
object, which in turn opens a
default session object. DbiInit
takes a single parameter: a pointer
to a record type which specifies

the application’s working direc-
tory, the BDE configuration file
from which IDAPI should obtain
configuration details such as
driver properties, aliases etc to
use, and various other details
which we’re not really concerned
with for the purposes of this arti-
cle. Passing a nil pointer to DbiInit
causes IDAPI to use the default
configuration file as specified in
WIN.INI for Delphi 1.0 and in the
Registry for Delphi 2.0.

As soon as the BDE has been
initialised, the application can
open databases and tables within
the default session, or open new
sessions within which databases
and tables can be opened. Note
that an application can initialise
the BDE only once: successive calls
to DbiInit will fail. A terminating
application must call DbiExit to
close the client which disconnects
the application from IDAPI. DbiInit
can be called as often as desired
provided that the existing client is
closed using DbiExit. Looking at
the DB unit’s initialisation section
in Delphi 1.0 and 2.0, we see that
the default session, encapsulated
by the TSession class and instanti-
ated as the Session object variable,
is created by a call to DbiInit.

Now the application is ready to
do all the usual stuff such as open-
ing databases and tables, perform-
ing queries and all the rest. More
specifically, a Delphi application is
now ready to open TDatabases and
TTables, and execute TQuery,
TBatchMove and TStoredProc. Obvi-
ously TDatabase encapsulates a
BDE database handle but a BDE
cursor is actually encapsulated by
TDataSet from which TTable,
TQuery, TStoredProc and TBatch-
Move are descended. TQuery encap-
sulates an IDAPI query statement
handle and a cursor handle for the
query result set. The property
TQuery.StmtHandle is initialised
when the query is prepared,
TQuery.Handle is initialised when
the executed query statement
returns a result set.

Using IDAPI to open a database
is done by calling DbiOpenDatabase
which takes an alias name as its
first parameter and returns a han-
dle to the database (of type hDbiDb)
on success. DbiOpenDatabase takes
other parameters but I’m only
going to discuss those parameters
that are relevant to the discussion
of the particular IDAPI function. A
table is opened using DbiOpenTable
which takes a database handle and

IDAPI Purpose Delphi

System Manages all BDE clients on a single machine

Client Manages the BDE sessions created and used by
a BDE application

Session Manages the database, cursors and query
statements created within each session

TSession

Driver Provides connectivity to the data source
(Paradox, dBase, Interbase, Oracle etc) for
which the driver is written

Database Collects together the tables created within
the database

TDatabase

Cursor Provides access to records in a table or query
result

TTable
(TDataSet)

Query
statement

Used by the BDE query engine to return query
results from tables

TQuery

➤ Table 1: IDAPI objects and their Delphi equivalents

10 The Delphi Magazine Issue 13

a table name among its parameters
and returns a cursor handle of type
hDbiCur. The fact that opening a
table requires an open database
may seem strange to us Delphi
developers because a TDatabase
component isn’t required to open
a TTable. In fact the TTable, TQuery
and TStoredProc components each
have a temporary Database prop-
erty of type TDatabase which is
opened and closed just before and
after the TTable, TQuery or
TStoredProc is opened and closed.
TDatabase has a Temporary run-time
property which is True if the data-
base instance will be freed after the
table is closed. I’ll leave you to
guess the IDAPI functions used to
close databases and tables.

It’s important to note that a Dbi
function (you’ll have guessed by
now that all IDAPI function names
start with Dbi so I’ll refer to them as
such) returns data to the caller
through the use of client allocated
pointers passed as parameters: in
Object Pascal this could be either
a var parameter or a pointer to a
client-allocated variable. The
return value indicates success or
the reason for the call’s failure.

The use of Dbi functions in Delphi
applications requires little effort.
For Delphi 1.0, Dbi functions are
declared in the DBIPROCS.INT unit
interface file, IDAPI data-types are
defined in DBITYPES.INT and IDAPI
error codes in DBIERRS.INT, all
residing in the DELPHI\DOC direc-
tory. Delphi 2.0 simplifies matters
by providing everything in one file
named BDE.INT in the directory
DELPHI\DOC. To use IDAPI calls in
your code just include the relevant
unit(s) in your unit’s uses state-
ment. If you’re writing code to be
portable between Delphi 1.0 and
2.0 it’s easier to declare the
required Dbi units as for Delphi 1.0
because Delphi 2.0 uses defined
unit aliases in order to resolve ref-
erences to DBIPROCS, DBIERRS
and DBITYPES to the BDE unit.

Let’s look at how IDAPI does the
things normally done within a
database application and more.

What’s The Status?
IDAPI provides functions to query
the BDE system status, return BDE

engine version and system configu-
ration information. This type of in-
formation can be useful when
things are going wrong with your
database application and you need
to know exactly what version and
build of the BDE you’re running,
how many cursors are open etc.

DbiGetSysInfo retrieves system
status information and takes a
SYSInfo record as a var parameter
(Listing 1).

System status information en-
compasses all BDE applications
loaded in the system. The active/
loaded drivers referred to are the
database drivers (Paradox, dBase
etc) loaded for use by IDAPI.

DbiGetSysVersion retrieves the
database engine version and takes
a SYSVersion record as a var
parameter (Listing 2).

The actual engine version is
determined from iVersion/100. The
Date and Time types are basically
long integers containing encoded
date and time information.
DbiGetSysConfig retrieves BDE
configuration information and
takes a SYSConfig record as a var
parameter (Listing 3).

Some of what’s described in
SYSConfig can be set via the System

page of the BDE Configuration
Utility. The setting for Local Share
determines whether local files will
be shared with non-IDAPI applica-
tions. Such a situation would occur
where an application’s tables are
shared with Paradox for DOS or
any other Paradox Engine applica-
tion. The network user name
can also be retrieved using
DbiGetNetUsername which takes a
pointer to a null-terminated string
as a parameter in which the user
name is returned.

The IDAPINFO application
(Figure 1, the code is on this
month’s disk) uses these functions
to display status, version and con-
figuration information in a dialog
and can be used to help under-
stand how the BDE/IDAPI works.
IDAPINFO allows you to refresh the
information retrieved and specify
whether or not IDAPI will be initial-
ised for the application (ie is an
IDAPI client created). Let’s use the
application to see what goes on in
the world of IDAPI.

First, boot or restart Windows.
Load Delphi 1.0 and run the
IDAPINFO project. The version and
configuration information dis-
played requires no explanation but

SYSConfig = record
 bLocalShare : Bool; { If Local files will be shared }
 iNetProtocol : Word; { Net Protocol (35, 40 etc.) }
 bNetShare : Bool; { True if connected to network }
 szNetType : DBINAME; { Network type }
 szUserName : DBIUSERNAME; { Network user name }
 szIniFile : DBIPATH; { Configuration file }
 szLangDriver : DBINAME; { System language driver }
end;

➤ Listing 3

SYSInfo = record
 iBufferSpace : Word; { in K }
 iHeapSpace : Word; { in K }
 iDrivers : Word; { Active/Loaded drivers }
 iClients : Word; { Active clients }
 iSessions : Word; { Number of sessions (for all clients) }
 iDatabases : Word; { Open databases }
 iCursors : Word; { Number of cursors }
end;

➤ Listing 1

SYSVersion = record
 iVersion : Word; { Engine version }
 iIntfLevel : Word; { Client Interface level }
 dateVer : Date; { Version date (Compile/Release) }
 timeVer : Time; { Version time (Compile/Release) }
end;

➤ Listing 2

12 The Delphi Magazine Issue 13

notice that Active clients,
Session and Open databases all have
counts of 1, despite the fact that no
other BDE applications are loaded
and IDAPINFO hasn’t initialised
IDAPI to register itself as a client.
Well, there is another BDE applica-
tion running – Delphi – which has
initialised the BDE on its own be-
half; after all, how else would
Delphi be able to display records
from a TTable or TQuery opened at
design time? Now check the
Initialise IDAPI check-box and re-
fresh the display. Now the counts
have been incremented because
IDAPINFO has called DbiInit and
created a new client, which created
a default session and, it appears, a
default database.

Next load Database Desktop and
refresh IDAPINFO. Notice that the
client, session and database
counts rise to three and Loaded
drivers becomes 1: Database
Desktop loads a table driver on
startup. From within DBD open a
few Paradox tables in the same
database and notice the cursors
count increase. Opening tables
from a different database will in-
crease the cursors count and open
databases count. Opening a dBase
or SQL table increases the loaded
drivers count, which decreases
when the SQL table is closed but
doesn’t decrease any further when
the dBase table is closed. It would
seem that the Paradox and dBase
drivers remain loaded even when
not needed. You might have also
noticed that the heap size grows
and shrinks as tables are opened
and closed. The buffer size never
shrinks below 256Kb because that
is the minimum buffer size speci-
fied (MINBUFSIZE) in the BDE
configuration file.

Running IDAPINFO as the sole
BDE client application reveals that
no buffer or heap have been allo-
cated, no drivers are loaded and no
BDE clients, sessions, database or
cursors have been opened. Now
check Initialise IDAPI and refresh
the information: both buffer and
heap have been allocated, the cli-
ents, sessions and database counts
are all one.

Note that changes to the 32-bit
BDE (version 3.0) mean that

IDAPINFO cannot be run with
Initialise IDAPI not checked
if compiled and run under Delphi
2.0 because DbiGetSysVersion,
DbiGetSysInfo and DbiGetSysConfig
all require that the BDE be initial-
ised. This isn’t the case with the
16-bit version of the BDE shipped
with Delphi 1.0, so it seems Borland
have tightened things up a little.

I’ve used a few other Dbi func-
tions in IDAPINFO. DbiDateDecode
and DbiTimeDecode decode the
binary date and time retrieved by
DbiGetSysVersion.

You may have noticed that all Dbi
function calls are enclosed in a call
to the Check procedure defined in
the form unit (Listing 4). This
simplifies the handling of non-
success (ie non-zero) return codes
from Dbi functions. In fact Borland
have provided a similar procedure
(which does a bit more) in the DB
unit which is used with almost
every call to IDAPI throughout the
VCL.

Cheating With Databases
Access to a table is gained via an
open database of which there are

generally two types: the standard
database and an SQL database. A
standard (or local) database is de-
fined by a disk directory containing
the tables managed by that data-
base whose parameters identify
the directory path. An SQL data-
base is defined by the SQL data-
base server which identifies the
logical location of the database, be
it a local or remote database serv-
er. It is possible to change the
working directory of an open local
database at run-time, which makes
it possible to cheat a little by con-
currently opening tables in differ-
ent directories using a single
TDatabase component. Delphi
doesn’t provide any way of doing
this, but a call to DbiSetDirectory
does the trick:

Check(DbiSetDirectory(
 Database1.Handle, szDir));

where Database1 is a non tempo-
rary open database and szDir is a
null-terminated string. Passing nil
as the second parameter changes
the working directory back to the
default path for the specified

procedure Check(Code: DBIRESULT);
var szError: array[0..DBIMAXMSGLEN] of char;
begin
 if Code <> DBIERR_NONE then begin
 DbiGetErrorString(Code, szError);
 raise Exception.Create(StrPas(szError));
 end;
end;

➤ Listing 4

➤ Figure 1: The IDAPINFO application

14 The Delphi Magazine Issue 13

database. Another directory-re-
lated function is DbiSetPrivateDir
which sets the private directory for
the current session to that speci-
fied by a null-terminated string pa-
rameter; passing nil resets the
private directory to the default
startup directory. However, the
TSession’s PrivateDir property
provides the same functionality as
this function. The demo applica-
tion SETWKDIR on this month’s
disk (see Figure 2) demonstrates
the use of DbiSetDirectory which
somewhat violates the standard
concept of a database!

Table Navigation
Obviously, any database engine
must provide table navigation
functions. Delphi provides most of
the table navigation methods
you’d ever need, though there are
a few things missing. It’s not possi-
ble to move to a particular record
position within a table (Paradox

and dBase both provide the means
to do so) and it’s not possible to
retrieve the current record num-
ber for a local table. IDAPI provides
functions to achieve all of these
missing Delphi features but for
some reason Borland chose not to
implement them. Let’s set about
putting that right by discussing the
relevant Dbi functions.

Both DbiSetToSeqNo and DbiSet-
ToRecordNo move a cursor’s record
pointer to a specified position, but
the choice of which one to use
depends on the table type. Only
Paradox tables support record
sequence numbers and only dBase
tables support record numbers,
but what is the difference between
them? A sequence number is a
logical record position: the posi-
tion of a record within the current
view, which may be filtered or
indexed, of the table. For instance,
with no active secondary index a
record’s sequence number is 56; a

secondary index is then activated
which changes that record’s se-
quence number to 10! Also, if a
record is inserted before record 56
then that record’s sequence num-
ber will change to 57 – that gives
potential for major trouble if the
table is shared and the application
is using sequence numbers to keep
track of record positions. Obvi-
ously sequence numbers are
pretty much unsuitable for keeping
track of a particular record, but
then what are bookmarks for? Use
them! dBase record numbers, on
the other hand, are much more re-
liable as an indicator of a record’s
actual position within the table, be-
cause the record number is a
physical record number which re-
mains constant regardless of what
indexes are applied to the table;
even inserting or deleting records
will not affect a dBase record’s re-
cord number. The only time the
record number will be changed is
after the table has been packed,
but that isn’t a problem because no
one else can have access to the
table whilst it’s being packed.

So on to DbiSetToSeqNo (Listing
5). I don’t recommend relying on it
to move to a previous record posi-
tion unless you’re certain that the
table hasn’t changed since in a way
which could have changed the
record sequence.

This function is easy enough to
follow, but bear in mind that if a call
to this function attempts to move
the record pointer to a sequence
number outside the range of re-
cords in the table, an error is re-
turned in DBIResult to indicate that
the start or end of the table
(DBIERR_BOF or DBIERR_EOF) has
been reached. The same applies to
DbiSetToRecordNo (Listing 6).

Whilst we’re on the subject of
table navigation, let’s take a look at
how records in a table are seen by
IDAPI. Records are conceptually
delimited by ‘cracks’ (see Figure 3)
on which a cursor can be
positioned.

Whilst this may seem odd it does
make life easier for the IDAPI pro-
grammer because a table scan can
be achieved by moving to the be-
ginning of the table (BOF) after
which DbiGetNextRecord can be

➤ Figure 2: The SETWKDIR application

function DbiSetToSeqNo({ Position to a logical record number }
 hCursor : hDBICur; { Cursor handle }
 iSeqNo : Longint { Sequence number }
): DBIResult;

➤ Listing 5

function DbiSetToRecordNo({ Position to Physical Rec# }
 hCursor : hDBICur; { Cursor handle }
 iRecNo : Longint { Physical record number }
): DBIResult;

➤ Listing 6

September 1996 The Delphi Magazine 15

called repeatedly until DBIERR_EOF
is returned after the last record has
been read and the cursor pointer
tries to advance past the end of the
table. Cracks are the reason why, in
a Delphi application using a
TDBNavigator, it is possible to move
to the first record in a table and
then still move back a record at
which point the ‘first record’
navigator button becomes dis-
abled because you’ve hit the BOF
crack; pressing the ‘refresh’ navi-
gator button re-enables the ‘first
record’ pushbutton because
DbiGetNextRecord was called.

So what about getting the se-
quence number or record number
of the current record of a Paradox
or dBase table? The function
DbiGetSeqNo retrieves a record’s se-
quence number but there’s no
equivalent to retrieve a record
number. Ho hum. Let’s have a look
at DbiGetSeqNo (Listing 7), which
returns an error of DBIERR_BOF,
DBIERR_EOF or DBIERR_NOCURRREC if
the record pointer isn’t positioned
on a record but on a crack.

What about getting a dBase
table’s current record number?
That involves a little more work
and an introduction to IDAPI prop-
erties. Remember that the BDE is
object-oriented in design and we all
know that objects have properties.
To find a record’s number we need
to examine, you’ve guessed it, the
record’s properties, which we
retrieve by calling DbiGetRecord
(Listing 8) where DBILockType is
defined as:

DBILockType = (dbiNOLOCK,
 dbiWRITELOCK, dbiREADLOCK);

and precProps is defined as shown
in Listing 9. I recommend passing
eLock as dbiNOLOCK, but a word of
caution: if the dataset is in edit/
insert mode the current record will
be locked but a call to DbiGetRecord
with eLock passed as dbiNOLOCK may
have undesirable side-effects. You
have been warned!

Because we’re not interested in
actually reading the record we can
pass pRecBuff as a nil pointer. We
can retrieve the sequence number
or record number from
RECProps.iSeqNum or RECProps.

iPhyRecNum respectively. To deter-
mine which is applicable is a sim-
ple matter of checking the TTable’s
TableType property for ttParadox or
ttDbase. If it’s ttDefault we then
need to check the table type (.DB or
.DBF) of the TableName property.

But there’s a simpler and better
way of determining whether you
should be concerned with se-
quence numbers or physical
record numbers when dealing with
a table: examine the table’s cursor
properties.

DbiGetCursorProps retrieves a
specified cursor’s properties and
is declared as shown in Listing 10.
Rather than discuss cursor
properties in detail (I’ll leave that
until next month) I’ll concentrate

on just one field of the CURProps
record: iSeqNums of type Integer,
which is 1 if the cursor uses se-
quence numbers and 0 if it uses
physical record numbers.

This way of determining which
record position identifier to use is
by far the most reliable, because as
new IDAPI table drivers are re-
leased they’ll have to implement
cursor properties. If we had relied
upon the fact that tables with a .DB
extension support sequence
numbers and .DBF tables support
physical record numbers, we’d
have more work to do to support
.COFFEE tables (produced by Java
applications) which might be
supported by potential future
IDAPI drivers!

➤ Figure 3:Cracks in the IDAPI record layout

function DbiGetRecord ({ Gets the current record }
 hCursor : hDBICur; { Cursor handle }
 eLock : DBILockType; { Optional lock request }
 pRecBuff : Pointer; { Record buffer(client) }
 precProps : pRECProps { Optional record properties }
): DBIResult;

➤ Listing 8

function DbiGetSeqNo ({ Get logical record number }
 hCursor : hDBICur; { Cursor handle }
 var iSeqNo : Longint { Pointer to sequence number }
): DBIResult;

➤ Listing 7

RECProps = record { Record properties }
 iSeqNum : Longint; { When Seq# supported only }
 iPhyRecNum : Longint; { When Phy Rec#s supported only }
 bRecChanged : Bool; { Not used }
 bSeqNumChanged : Bool; { Not used }
 bDeleteFlag : Bool; { When soft delete supported only }
end;

➤ Listing 9

function DbiGetCursorProps ({ Get Cursor properties }
 hCursor : hDBICur; { Cursor handle }
 var curProps : CURProps { Cursor properties }
): DBIResult;

➤ Listing 10

16 The Delphi Magazine Issue 13

Listing 11 shows a function to
retrieve a TTable’s current record
number.

The good news for Delphi 2.0
developers is that TTable has a new
RecNo property. By the way, the
value of iSeqNums can also be used
to decide whether DbiSetToSeqNo or
DbiSetToRecordNo should be used to
move to a particular record in a
local table.

One thing I’ve forgotten to
mention is the UpdateCursorPos
method of TTable which must be
called before using any Dbi func-
tions which rely on the TTable’s
current underlying cursor posi-
tion, such as DbiGetSeqNo or
DbiGetRecord – this must be done

because a TDataSet (of which
TTable is an ancestor) buffers re-
cords retrieved from the cursor
and therefore the TTable record
position and underlying cursor
position might not be in synch. The
VCL help states that TTable.Cursor
PosChanged must be called after call-
ing a Dbi function which alters the
TTable’s underlying cursor posi-
tion but to be honest I’ve had no joy
with that – calling TTable.Refresh
seems to do the job of re-synchro-
nising the TTable’s record pointer
with the underlying cursor.

The CALLBDE demo application
on the disk (Figure 4) demon-
strates the use of the Dbi functions
discussed so far.

I’ll introduce another useful Dbi
function whose functionality is
already provided by the
TTable.MoveBy method but in which
there’s a subtle bug with Delphi 1.0.
MoveBy moves a table’s record posi-
tion by a specified offset (which
may be negative) but because this
parameter is an integer we’re lim-
ited to moving no further than
32767 records in either direction
from the current position which
can be a bit limiting with very large
tables. In Delphi 2.0 an integer is 32
bits so there’s no such problem
with MoveBy.

The function DbiGetRelative-
Record moves the cursor position
by a specified offset (Listing 12).
Notice that iPosOffset is a LongInt
which means we can move by
2147483647 records in either direc-
tion. Don’t forget to call Update-
CursorPos before calling this
function and Refresh afterwards.
Strangely, the implementation of
TTable.MoveBy doesn’t make any
calls to DbiGetRelativeRecord.

TDBRecLabel
With all this new-found IDAPI
knowledge let’s create a data-
aware control component to dis-
play the current sequence/record
number of the dataset associated
with a particular datasource. The
record number can be displayed as
Record 1 or Record 1 of 500 for
example.

As with any data-aware compo-
nent we need to declare a private
TFieldDataLink member which will
be linked to a particular TData-
Source component. As for which
component TDBRecLabel should be
descended we need to choose a
TLabel-type component which
doesn’t surface a Caption property.

Looking at TLabel’s descendant
we find TCustomLabel has every-
thing we need as the basis for
TDBRecLabel and it doesn’t surface
the protected Caption property. In
fact the VCL provides a number of
TCustomXXXXX components which
surface few or no public or
published properties and there-
fore provide a good foundation for
deriving new components, which is
exactly the reason Borland
included them!

➤ Figure 4: The CALLBDE application

function GetRecNo(ATable: TTable): LongInt;
var Props: CURProps;
 RProps: RECProps;
begin
 Result := -1;
 Check(DbiGetCursorProps(ATable.Handle, Props));
 ATable.UpdateCursorPos;
 Check(DbiGetRecord(ATable.Handle, dbiNOLOCK, nil, @RProps));
 if (Props.iSeqNums = 1) then
 Result := RProps.iSeqNum
 else
 if (Props.iSeqNums = 0) then
 Result := RProps.iPhyRecNum
end;

➤ Listing 11

function DbiGetRelativeRecord ({ Find/Get a record by record number }
 hCursor : hDBICur; { Cursor handle }
 iPosOffset : Longint; { offset from current position }
 eLock : DBILockType; { Optional lock request }
 pRecBuff : Pointer; { Record buffer(client) }
 precProps : pRECProps { Optional record properties }
): DBIResult;

➤ Listing 12

September 1996 The Delphi Magazine 17

TDBRecLabel doesn’t surface the
Caption property but uses it inter-
nally; however, all other properties
surfaced by TLabel have been sur-
faced by TDBRecLabel. The private
TFieldDataLink object FDataLink
provides a few useful event
handlers which are initialised in
the constructor. OnDataChange is
triggered for the same reasons as
TDataSource.OnDataChange – when
the current record in the dataset
changes or refreshes for various
reasons. OnActiveChange is trig-
gered whenever the active state of
the dataset associated with our
datalink’s DataSource property
changes (ie when the dataset is
opened or closed) but it’s impor-
tant to note that if the dataset asso-
ciated with DataSource.DataSet
changes from one open dataset
to another open dataset,
OnActiveChange will not be triggered
because the active state of the
datasource’s dataset property
hasn’t actually changed.

FDataLink’s DataSource property
is set via the published DataSource
property which has been added to
this component’s class: see the
GetDataSource and SetDataSource
property access methods. Note
that SetDataSource also retrieves
the cursor properties of the
datasource’s dataset which are
used to set the private
FSeqNoCapaable and FRecNoCapable
fields. The DisplayType property is
also an additional property and
can be set to rdRecordNo or
rdRecordNoOfCount which alters the
record number display format as
shown in Figure 5.

One small problem with
TDBRecLabel concerns painting
itself when not connected to an
active datasource/dataset in the
IDE’s form designer. The same
problem exists with the TDBText
data control component, in that
the component’s caption text is not
displayed when its associated
datasource/dataset is inactive
when the form is loaded. This
occurs because the Caption
property is not published and
hence isn’t stored in the form file.
However, once the dataset is
opened the caption does get
displayed.

It’s worth mentioning the
Notification method which basi-
cally receives component insert
and remove messages from the
IDE. Notification is a virtual
method of TComponent which
receives a pointer to a component
and the operation (of type
TOperation which is defined in
CONTROL.PAS) which can be
opInsert or opRemove. This method
is important for components hav-
ing properties which are pointers
to other components. If an appro-
priate Notification method is not
defined for a particular component
then that component’s component
property may become a dangling
pointer when the referenced
component is removed or freed.

However, I can reveal that the
Notification method defined for
TDBRecLabel is actually unneces-
sary because a TDataSource’s
destructor sets all of its associated
datalink’s datasource properties to
nil, but including the method does
illustrate an important point
regarding component implementa-
tion – if our component property
wasn’t of type TDataSource then the
Notification method would be
essential. Whenever you override
the Notification method be sure to
call the inherited method before
doing anything else!

Until Next Month...
For those of you wanting to find out
more about IDAPI function calls
Borland have published some
sources of information.

The IDAPI Function Reference is a
Windows help file (IDAPI.HLP for
BDE 2.0) available for download

from CompuServe and from
Borland’s own web site (which is at
www.borland.com) which details
all the functions provided by IDAPI.
Delphi 2.0 Developer edition
includes BDE32.HLP for BDE 3.0
which details all IDAPI functions
and lists the new functions intro-
duced in the 32-bit BDE. Whilst
these help files are a valuable
resource it’s a good idea to get a
copy of the BDE User’s Guide if
you’re really serious about BDE
programming as it discusses funda-
mental BDE/IDAPI concepts which
aren’t really covered in the help
files, although I’ve covered a fair
few of these in this and the
previous article. The Guide can be
difficult to get hold of: in the USA
you can get it direct from Borland,
but as far as we know other
Borland offices don’t stock it.Try
your local User Group.

Next month we’ll move on to
discuss bookmarks, cursor proper-
ties and introduce some more
useful IDAPI functions and
structures which open up even up
more possibilities for the Delphi
database developer.

John O’Connell is a freelance
software consultant and devel-
oper specialising in Delphi and
database application develop-
ment. He can be reached via email
on 73064.74@compuserve.com

Copyright 1996 John O’Connell.
All rights reserved.

➤ Figure 5: TDBRecLabel in action

18 The Delphi Magazine Issue 13

	Programming IDAPI
	What’s The Status?
	Cheating With Databases
	Table Navigation
	TDBRecLabel
	Until Next Month...

